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A method for generation of the modified spectrum autointerferometric correlation that allows single-shot
pulse characterization is demonstrated. A sensitive graphical representation of the ultrashort pulse phase
quality is introduced that delineates the difference between the presence of temporal and spectral phase
distortions. Using these schemes, full-field reconstruction of ultrashort laser pulses is obtained in real time
using an efficient iterative technique. © 2007 Optical Society of America
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Detailed characterization of ultrashort laser pulses is
vital for many applications. There exist many pulse
characterization techniques with varying experimen-
tal and/or computational complexity. These range
from interferometric autocorrelation (IAC) [1] to full-
field reconstruction techniques such as frequency-
resolved optical gating (FROG) [2] and spectral shear
interferometry for direct electric field reconstruction
(SPIDER) [3]. Adaptive pulse characterization tech-
niques such as multiphoton intrapulse interference
phase scan (MIIPS) [4] have been successful not only
in retrieving the electric field but in compensating
the spectral phase to achieve transform-limited
pulses. In many applications, full-field reconstruction
may not be required, although sensitive real-time in-
formation on phase distortions due to the presence of
chirp and dispersion is still essential. Modified spec-
trum autointerferometric correlation (MOSAIC) was
developed to address this need using the information
contained in an IAC trace and has been shown to be
far more sensitive to pulse chirp than a traditional
TIAC [5]. The new advances in the implementation of
MOSAIC are the following.

(a) Single-shot characterization using a combina-
tion of fringe-free (noninterferometric) autocorrela-
tion and second-harmonic spectrum

(b) A hybrid graphical representation that distin-
guishes between spectral and temporal phase distor-
tions

(c) Real-time full-field reconstruction using the
above schemes with an efficient sequential search
algorithm

Naganuma et al. showed that the pulse spectrum and
IAC provide a sufficient dataset to uniquely recon-
struct the complex electric field, with only a time-
direction ambiguity [6]. Retrieval techniques such as
phase and intensity from correlation and spectrum
only (PICASO) [7] make use of a similar three enve-
lope dataset. The usefulness of MOSAIC was ex-
tended by use of homodyne operation and signal av-
eraging [8]. High-fidelity MOSAIC traces were
recovered in the presence of extreme noise. This
fringe-free averaging technique measures the upper
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and lower MOSAIC envelopes with a very high
signal-to-noise ratio (SNR) and allows us to clearly
distinguish pulses that produce essentially identical
IAC traces [9]. The fringe-free MOSAIC technique
has recently been used to characterize ultrashort
pulses in the mid-IR [10].

The increased SNR found on averaged MOSAIC
traces extends the utility of all retrieval techniques
using the dataset outlined by Naganuma et al. [6]. By
combining MOSAIC data with the first-order inter-
ferogram and performing additional analysis, the
spectral phase of the electric field can be recovered
[11]. A number of synthesized pulses of varying com-
plexity were shown to be reconstructed successfully
using an iterative method. Retrieval methods using
MOSAIC are similar to PICASO but provide the ad-
vantages of time-domain signal averaging and
straightforward visual chirp interpretation.

The principle of computing a MOSAIC can be de-
scribed in the frequency domain as follows: a second-
order IAC waveform with a fringe frequency () is
Fourier transformed to generate a spectrum. Spec-
tral filtering is then performed to remove the ) com-
ponent and amplify the 2() component by a factor of
2. An inverse Fourier transform generates a new
time-domain signal known as a fringe-resolved
MOSAIC [5]. The upper envelope is replaced by the
intensity profile while the lower envelope—identified
by two shoulders above the baseline—provides
background-free phase information. Examples are
shown in Fig. 1 (solid curves). The presence of shoul-
ders is a signature of temporal pulse chirp while a
flat baseline is an indication of a flat temporal phase
[12].

In the (delay) time-domain analysis, the maximum
and minimum envelopes of MOSAIC are given by the
intensity autocorrelation, g(7)=[f(¢)f(¢t+ 7)d¢, and the
difference computation, Si,=g(7)-|g,(7)|, respec-
tively [8]. The amplified 2Q) component of the IAC is
expressed as

8p(7) = f f@f(t + e 1209 lgg, (1)
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which is also the envelope of the second-harmonic
field autocorrelation. The temporal chirp is repre-
sented by ¢(¢), while f(¢) is the intensity of the pulse.
The second-harmonic field autocorrelation is related
to the second-harmonic spectrum by

lgp (7| = [FH(EX(Q)P), (2)

where the second-harmonic power spectrum is repre-
sented by |E?(Q2)|> and F~! denotes the inverse Fou-
rier transform operation. For single-shot arrange-
ments, fringe-resolved second-order IAC traces are
not practical to produce. The method we present here
overcomes this obstacle by making use of the inten-
sity autocorrelation and second-harmonic generation
(SHG) spectrum. We call this envelope-MOSAIC or
E-MOSAIC, which can be very useful for characteriz-
ing ultrashort pulses from low repetition rate (ap-
proximately kilohertz) amplified laser systems.

In a proof-of-principle demonstration, E-MOSAIC
is compared with MOSAIC in the following experi-
ment. A second-order IAC is produced with mode-
locked 85 fs Ti:sapphire laser pulses centered at a
wavelength of 825 nm using SHG. An SHG spectrum
is collected by blocking the delay arm and routing the
frequency-doubled output to an Ocean Optics
HR4000 spectrometer with an 8 um optical fiber. The
inverse Fourier transform of the second-harmonic
power spectrum is computed over a spectral band-
width consistent with the total time delay of the in-
tensity autocorrelation. The resulting time-domain
trace is normalized to the intensity autocorrelation
and subtracted from the intensity autocorrelation to
produce S, ;, [see Fig. 1(a), open circles]. This result
is compared with S, ;, and the intensity autocorrela-
tion obtained from the second-order IAC using the
same experimental setup [Fig. 1(a), solid lines]. The
excellent agreement between the two approaches
validates the fidelity of E-MOSAIC. Next, we deliber-
ately chirp the laser pulse prior to the autocorrelator
by passing it through a 2 mm thick ZnSe window and
perform the same operations described above. Re-
sults presented in Fig. 1(b) again show clear agree-
ment.

Temporal chirp interpretation from a MOSAIC
trace is typically straightforward, as evidenced by
the appearance of shoulders in the minimum enve-
lope. As Fourier analysis indicates, however, spectral
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Fig. 1. MOSAIC traces obtained from (a) 85 fs Ti:sapphire
laser and (b) intentionally chirping the laser pulse with
2 mm of ZnSe. MOSAIC rendered from an SHG spectral
measurement (circles) and a second-order IAC (solid
curve).
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phase distortion (dispersion) does not necessarily im-
ply temporal phase distortion (chirp). For example, a
pulse having a symmetric spectrum and only third-
order dispersion (TOD) will exhibit a flat MOSAIC
minimum but is not transform limited. Conversely, in
the instance of an asymmetric spectrum and flat
spectral phase, the MOSAIC trace will exhibit a non-
zero minimum envelope while the intensity autocor-
relation is bandwidth limited. To accommodate these
situations, we introduce an enhanced representation
of the MOSAIC trace that is distinctly sensitive to
both spectral dispersion and temporal chirp in pulse
distortions. The added sensitivity requires the pulse
spectrum in addition to second-order IAC. In rapid-
scan IAC schemes, this can be obtained by adding a
linear detector to the same interferometer [8,11].
This enhanced representation is displayed in the
form of a hybrid (H)-MOSAIC. An H-MOSAIC trace
is produced by assigning a flat phase across the mea-
sured pulse spectrum and computing the transform-
limited intensity autocorrelation, g7l(7), which is
then normalized to g(7) at 7=0. The difference be-
tween the transform-limited and measured intensity
autocorrelation is computed. A symmetric double-
hump appears for broadened pulses while a
transform-limited pulse is flat. Accounting for sym-
metry with respect to zero delay, we take the average
of both halves in both the difference computation and
the measured lower MOSAIC envelope, g(7)-|g,(7)].
We define the lower envelope of H-MOSAIC as

g(n-g™(7
g(n) - lg,(7)]

for 7<0

for r=0"

Spyp(7) = { (3)

The upper envelope of H-MOSAIC is g(7). The lower
envelope of H-MOSAIC is sensitive to spectral dis-
persion for 7<<0 and temporal chirp for 7=0. It is im-
portant to note the nonorthogonality of the
H-MOSAIC peaks, i.e., in general dispersion can give
rise to a temporal chirp and vice versa. In Fig. 2 we
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Fig. 2. Simulation of H-MOSAIC for a pulse having a sym-
metric spectrum with (a) no dispersion, (b) GVD, (¢) TOD,
and (d) asymmetric spectrum with no dispersion. The
dashed line indicates zero delay.
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present H-MOSAIC simulations for the special cases
of a pulse having a symmetric spectrum with (a) no
dispersion, (b) group-velocity dispersion (GVD) only,
and (c) TOD only. The pulse distinguished by the
trace in (a) can be regarded as the “perfect pulse”;
symmetric in time and frequency, and without chirp
or dispersion. Any small deviation from this symme-
try will appear as shoulders in the H-MOSAIC
traces. Note that in case (¢) when only TOD is
present we will have g(7)-|g,(7)|=0. Displayed in
part (d) of Fig. 2 is an H-MOSAIC produced from an
asymmetric spectrum and flat spectral phase. This is
transform limited, which leads to Sgyp(7)=0 for 7
<0 because of the flat spectral phase. We note that
there is no new information in H-MOSAIC that is not
already present in a MOSAIC trace (or IAC) and
spectrum. However, an H-MOSAIC trace extracts
and renders such information in an easily identifi-
able graphical representation.

The H-MOSAIC trace is a visual representation of
the dataset used in one-dimensional retrieval
schemes. Experimental reconstruction using
MOSAIC and the pulse spectrum has been demon-
strated using an iterative line minimization tech-
nique [11]. In this reconstruction method, all points
in the spectral phase are optimized individually at
the expense of processing time. We can reduce the
processing time ~7X by analyzing phase with a
fourth-order Taylor-series expansion and adjusting
the coefficients. Our retrieval algorithm is imple-
mented by sequential optimization of the Taylor-
series coefficients and works by first optimizing GVD,
then TOD and if needed fourth-order dispersion. This
sequence accounts for the prominence of the lower-
order spectral phase coefficients encountered in real-
istic pulses and gives direct insight to the order of
dispersion on a pulse possessing a Taylor expandable
phase.

We use the sequential optimization technique to re-
construct the electric field from the measured pulse
spectrum and MOSAIC of Fig. 1(b). An iterative sim-
plex algorithm minimizes the root-mean-square
(rms) error, A. Minimization of the rms defines con-
vergence of the algorithm. The measured spectrum
and retrieved spectral phase from retrieval
(R)-MOSAIC are shown in Fig. 3(a). Execution of the
sequential reconstruction algorithm using 128 points
is accomplished on a laptop computer in less than 1 s
with a 1.8 GHz Centrino Duo processor for A
=0.0072. This minimum achievable rms error is set
by experimental noise and higher-order phase terms
not accounted for in the Taylor-series phase expan-
sion.

Further reduction of rms error can be obtained by
individual optimization of each point in the spectral
phase using a line-search method similar to [11]. Our
line-search algorithm is seeded with the sequential
reconstruction result and run until a new minimum
achievable rms is found. The retrieved phase and re-
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Fig. 3. (a) Measured spectrum (solid curve) and retrieved
phase (dashed curve) from the R-MOSAIC algorithm. The
retrieved phase from an individual point line search is re-
produced (dots). (b) Experimental H-MOSAIC (solid curve)
and reconstructed H-MOSAIC (circles) from the phase
(dots) and measured spectrum of (a).

constructed H-MOSAIC trace are depicted in Fig.
3(a) (dots) and Fig. 3(b) (circles), respectively. Pro-
cessing time increases to ~30 s, giving a reduction of
rms error from 0.0072 to 0.0038. We find this accu-
racy improvement to be of little practical benefit.

In summary, we have shown that the MOSAIC
pulse characterization algorithm can be implemented
in a single-shot scheme (provided the SNR is suffi-
ciently high) that we call E-MOSAIC. We determine
the location of phase distortions using a selective
H-MOSAIC trace. Real-time phase retrieval possess-
ing only time-direction ambiguity was experimen-
tally demonstrated for pulses having spectral disper-
sion. MOSAIC software is available for free download
at http://www.optics.unm.edu/sbahae/.
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